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1 Exercise

y = xβ + µ (1)

The estimator of β, β̂ is

β̂ = (x′x)−1x′y (2)

Suppose y, x, β above are defined as following:

y =


y1
y2
...

yn

 , x =


1 x1
1 x2
...

1 xn

 , β =

(
β1
β2

)
(3)

(HINT): For a matrix A, if we let

A =

(
a b

c d

)
then, we know the following holds:

A−1 =
1

|A|
(adjA)

=
1

ad− bc

(
d −b

−c a

)
(4)

Suppose we actually calculate (x′x)−1 and x′y to put them together into β̂ = (x′x)−1x′y,

x′x =

(
1 1 · · · 1

x1 x2 · · · xn

)′


1 x1
1 x2
...

1 xn


=

(
n

∑
xi∑

xi
∑

x2i

)
(5)

Using Cramer’s rule and from equation (8), we can exercise to get a and b. From equation

(4),

(x′x)−1 =
1

n
∑

x2i − (
∑

xi)2

( ∑
x2i −

∑
xi

−
∑

xi n

)
(6)

x′y =

(
1 1 · · · 1

x1 x2 · · · xn

)′


y1
y2
...

yn


=

( ∑
yi∑
xiyi

)
(7)
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Finally from equation (6) and (7),

(x′x)−1x′y =

( ∑
x2i −

∑
xi

−
∑

xi n

)( ∑
yi∑
xiyi

)
n
∑

x2i − (
∑

xi)2
(8)

=

( ∑
x2i −

∑
xi
∑

xiyi
−
∑

xi
∑

yi + n
∑

xiyi

)
n
∑

x2i − (
∑

xi)2
(9)

b =
−
∑

xi
∑

yi + n
∑

xiyi
n
∑

x2i − (
∑

xi)2

=
n
∑

xiyi − (nx̄)(nȳ)

n
∑

x2i − (nx̄)2

=

∑
xiyi − nx̄ȳ∑
x2i − nx̄2

(10)

a =
n
∑

x2i ȳ − nx̄
∑

xiyi
n
∑

x2i − (
∑

xi)2

=

∑
x2i ȳ − x̄

∑
xiyi∑

x2i − nx̄2

=
(
∑

x2i − nx̄2 + nx̄2)ȳ − x̄
∑

xiyi∑
x2i − nx̄2

(11)

=
(
∑

x2i − nx̄2)ȳ + nx̄2ȳ − x̄
∑

xiyi∑
x2i − nx̄2

= ȳ − −nx̄ȳ +
∑

xiyi∑
x2i − nx̄2

x̄

= ȳ − bx̄ (12)
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2 Derivation of OLS(ordinary least squares) Estimator

y = xβ + µ (13)

ŷ = xβ̂ (14)

µ̂ = y − ŷ

= y − xβ̂ (15)

Q = µ̂′µ̂

= (y − xβ̂)′(y − xβ̂)

= y′y − β̂′x′y − y′xβ̂ + β̂′x′xβ̂

= y′y − 2β̂′x′y + β̂′x′xβ̂ (16)

Let’s minimize RSS(residual sum of squares) with respect to β̂, then,

∂Q

∂β
= 0 : (17)

β̂ = (x′x)−1x′y

= (x′x)−1x′(xβ + µ)

= β + (x′x)−1x′µ (18)

E(β̂) = β (19)

V (β̂) = E(β̂ − β)(β̂ − β)′

= E
[
(x′x)−1x′µµ′x(x′x)−1

]
= (x′x)−1x′E(µµ′)x(x′x)−1

= σ2(x′x)−1 where E(µµ′) = σ2I (20)

From equation (13-15), in general, x, y, and β can be represented as,

x =


1 x12 · · · x1k
1 x22 · · · x2k

...

1 xn2 · · · xnk

 , y =


y1
y2
...

yn

 , β =


β1
β2
...

βk

 (21)

In this case, we can also get the estimate β̂ of population parameter β by differentiating

the RSS with respect to each β̂i. That is, from equation (15), we get

µ̂′µ̂ =
∑

µ2
i

=
∑

(yi − β̂1 − β̂2xi2 − · · · − β̂kxik)
2 (22)

≡ Q

∂Q

∂β̂1
= 2

∑
(yi − β̂1 − β̂2xi2 − · · · − β̂kxik)(−1) = 0

∂Q

∂β̂2
= 2

∑
(yi − β̂1 − β̂2xi2 − · · · − β̂kxik)(−xi2) = 0
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...
∂Q

∂β̂k
= 2

∑
(yi − β̂1 − β̂2xi2 − · · · − β̂kxik)(−xik) = 0

We can rewrite the above equations as following after rearranging them.

nβ̂1 + β̂2
∑

xi2 + · · ·+ β̂k
∑

xik =
∑

yi

β̂1
∑

xi2 + β̂2
∑

x2i2 + · · ·+ β̂k
∑

xi2xik =
∑

yixi2

...

β̂1
∑

xik + β̂2
∑

xikxi2 + · · ·+ β̂k
∑

x2ik =
∑

yixik


n

∑
xi2 · · ·

∑
xik∑

xi2
∑

x2i2 · · ·
∑

xi2xik
...

...
...

...∑
xik

∑
xikxi2 · · ·

∑
x2ik




β̂1
β̂2
...

β̂k

 =


∑

yi∑
xi2yi
...∑
xikyi

 (23)

We can see that the above equation (23) is in the form of (x′x)β̂ = x′y.

Exercise: Try to obtain β̂ using the method discussed above when x in equation (13)

is

1. a vector of constant 1,

2. a vector of constant 1 and one explanatory variable.

5



3 BLUE(best linear unbiased estimator)

Best linear unbiased estimator is an estimator which has the least variance among all linear

unbiased estimator. Let (x′x)−1x′ = A,so that β̂ can be a general form of linear estimator

such as

β̂ = (x′x)−1x′y

= Ay (24)

Assume that we have another linear unbiased estimator β∗ = C∗y,

β∗ = C∗y

= (A+ C)(xβ + µ)

= (A+ C)xβ + (A+ C)µ

= Axβ + Cxβ + (A+ C)µ

= β + Cxβ + (A+ C)µ (25)

then, since β∗ is unbiased estimator, E(β∗) = β is satisfied and it implies Cx = 0 should

hold from equation (25).

V (β∗) = E[(A+ C)µµ′(A+ C)′]

= (A+ C)(A+ C)′σ2 (26)

Then,

(A+ C)(A+ C)′ = AA′ +AC ′ + CA′ + CC ′

= (x′x)−1 + (x′x)−1x′C ′ + Cx(x′x)−1 + CC ′

= (x′x)−1 + CC ′ (27)

V (β∗) = (A+ C)(A+ C)′σ2

=
(
(x′x)−1 + CC ′

)
σ2

= (x′x)−1σ2 + CC ′σ2

= V (β̂) + CC ′σ2 ≥ V (β̂) (28)

the above holds since CC ′ is positive semidefinite.
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4 Regarding Distributions

1 Suppose M is symmetric and idempotent matrix rank(M) = trace(M).

2 Suppose µ ∼ N(0, V ), then

µ′V −1µ ∼ x2(k).

3 Suppose µ ∼ N(0, σ2In) and M,N are k × k symmetric and idempotent matrix with

MN = 0, then µ′Mµ and µ′Nµ are stochastically independent.

4 Suppose µ ∼ x2(m), and ν ∼ x2(n), then

µ/m

ν/n
∼ F (m,n).

5 Suppose Z ∼ N(0, 1) and µ ∼ x2(m) are independent, T = Z√
µ/m

is following t-

Distribution with degree of freedom m.

Y = Xβ + µ (29)

Ŷ = Xβ̂ (30)

µ̂ = Y − Ŷ

= Y −Xβ̂ (31)

β̂ = β + (X ′X)−1X ′µ (32)

If we let X(X ′X)−1X ′ = M , I −X(X ′X)−1X ′ = I −M = N , then rank(M) = k and

rank(N) = n− k holds. Since β̂ − β = (X ′X)−1X ′µ From above equation (32),

X(β̂ − β) = X(X ′X)−1X ′µ = Mµ (33)

µ̂ = Xβ + µ−Xβ̂ (34)

= µ−Mµ = (I −M)µ = Nµ (35)

µ̂′µ̂ = (Y −Xβ̂)′(Y −Xβ̂) = µ′Nµ (36)

µ̂′µ̂

σ2
= (

µ

σ
)′N(

µ

σ
) ∼ x2(n− k) (37)

(β̂ − β)′X ′X(β̂ − β)

σ2
= (

µ

σ
)′M(

µ

σ
) ∼ x2(k) (38)
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5 t−Value of β̂i, R
2, R̄2, Significance Test of Regression Equa-

tion

5.1 t−Value of β̂i

From β̂ ∼ N(β, σ2(X ′X)−1), and from µ̂′µ̂
σ2 = (µσ )

′N(µσ ) ∼ x2(n−k) we can discuss the method

to test the statistical significance of β̂i.

First, if we take the estimator of σ as

s2 =
µ̂′µ̂

n− k

, we can show that E(s2) = σ2, since (n−k)S2

σ2 ∼ χ2
(n−k) holds. Therefore, with this following

distributional information of T(n−k),

T(n−k) =
Z√

χ2
(n−k)/(n− k)

(39)

=
(β̂i − βi)/σ

√
(x′x)−1

ii√
(n−k)s2

σ2 /(n− k)
(40)

=
β̂i − βi

s
√
(x′x)−1

ii

(41)

we can test the null hypothesis, H0 : βi = 0.

5.2 R2, R̄2

TSS: Total Sum of Squares Y ′Y

ESS: Explained Sum of Squares β̂′X ′Xβ̂ = (Xβ̂)′(Xβ̂)

RSS: Residual Sum of Squares µ̂′µ̂

Let y = Y − Ȳ , then, y′y = Y ′Y − nȲ 2.

Exercise: Discuss the reason why β̂′x′µ̂ = µ̂′xβ̂ = 0.

y = xβ̂ + µ̂ (42)

y′y = β̂′x′xβ̂ + µ̂′µ̂ (43)

TSS = ESS + RSS (44)

R2 =
ESS

TSS
= 1− RSS

TSS
(45)

= 1− µ̂′µ̂

y′y
(46)

= 1− µ̂′µ̂

Y ′Y − nȲ 2
(47)

R̄2 = 1− µ̂′µ̂/(n− k)

(y′y − nȲ 2)/(n− 1)
(48)

= 1− (1−R2)
n− k

n− 1
(49)
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5.3 the Significance Test of Regression Equation

Test of null hypothesis H0 : βi = 0, i = 2, 3, · · · , k.

Let y = Y − Ȳ , x = X − X̄, then

(β̂ − β)′x′x(β̂ − β)

σ2
= (

µ

σ
)′M(

µ

σ
) ∼ χ2

(k−1)

above will be reduced to
β̂′x′xβ̂

σ2
∼ χ2

(k−1)

under null hypotheis of H0. In addition, since β̂′x′xβ̂ = β̂′X ′Y − nȲ 2 = y′y − µ̂′µ̂,

(y′y − µ̂′µ̂)/(k − 1)

(µ̂′µ̂)/(n− k)
(50)

=
(β̂′X ′Y − nȲ 2)/(k − 1)

(µ̂′µ̂)/(n− k)
(51)

=
(β̂′X ′Y − nȲ 2)/(k − 1)

(Y ′Y − β̂′X ′Y )/(n− k)
∼ F(k − 1, n− k) (52)
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6 Hypothesis Testing for the Coefficients Under Constraints

Suppose R is a matrix with m× k, we can set the m constraints on coefficients as Rβ = r.

Then the constrained estimator Rb follows

E(Rb) = r

V (Rb) = E[R(b− β)(b− β)′R′] = σ2R(x′x)−1R′

(Rb− r)[R(x′x)−1R′]−1(Rb− r)/σ2 ∼ χ2(m)

(Rb− r)[R(x′x)−1R′]−1(Rb− r)/(ms2) ∼ F (m,n− k)

Suppose b is an estimator for β without constraints, and b∗ as an estimator for β with

constraints, then,

Y −Xb∗ = (Y −Xb) + (Xb−Xb∗)

e∗ = e+X(b− b∗)

e∗
′
e∗ = e′e+ (b− b∗)′X ′X(b− b∗), Âü°́ı: e’X = 0

(b− b∗)′X ′X(b− b∗)/m

e′e/(n− k)
= e∗

′
e∗−e′e
ms2

∼ F (m,n− k)

The result of the last equation follows since (b− b∗)′X ′X(b− b∗)/σ2 ∼ χ2(m) holds. Also,

the Significance Test of Regression Equation discussed above is a special case of this F -test.

(Proof)

Consider Lagrangean Function to obtain b∗, the estimator for β with constraints,

L =
1

2
(Y −Xb∗)′(Y −Xb∗) + λ′(Rb∗ − r)

∂L

∂b∗
= −X ′(Y −Xb∗) +R′λ = 0

∂L

∂λ
= Rb∗ − r = 0

λ = [R(X ′X)−1R]−1R(X ′X)−1(X ′Y −X ′Xb∗)

= [R(X ′X)−1R]−1Rb− [R(X ′X)−1R]−1Rb∗)

= [R(X ′X)−1R]−1(Rb− r)

b∗ = b+ (X ′X)−1R′[R(X ′X)−1R]−1(Rb− r)

(b− b∗)′X ′X(b− b∗) = (Rb− r)[R(x′x)−1R′]−1(Rb− r)
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7 Test of Homogeneity of Multiple Regression Function

Suppose there are two samples of our choice with the sample size of n1, n2, respectively. Set

up two population regression functions, y1 = X1β1 + µ1, and y2 = X2β2 + µ2 from which

those samples are supposedly drawn. Then X1, X2 here are n1 × k, n2 × k, respectively.

Under the null hypothesis of H0 : β1 = β2, the model can be represented as following:

(
y1
y2

)
=

(
X1 0

0 X2

)(
β1
β2

)
+

(
µ1

µ2

)

Null hypothesis with k constraints can be presented as

Rβ = (I − I)

(
β1
β2

)
= 0

. From above discussion, we know that

(e∗
′
e∗ − e′e)/k

e′e/(n1 + n2 − 2k)
= F (k, n1 + n2 − 2k)

follows under null hypothesis. This type of technique is also called as the test of structural

break.
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8 Prediction

Suppose the null hypothesis above is true (or there is no structural break). Make a prediction

on y2 based on the estimator of β1, b1. In this case, when X2 is provided as explanatory

variable for y2, then predicted value of y2 is X2b1 = X2(X
′
1X1)

−1X ′
1y1, and E(X2b1) =

E(y2) will hold. Prediction error (d) is

d = y2 −X2b1 = X2β2 + µ2 −X2β1 −X2(X
′
1X1)

−1X ′
1µ1

E(d) = X2β2 −X2β1 = 0

V (d) = V (µ2 −X2(X
′
1X1)

−1X ′
1µ1)

= E(µ2 −X2(X
′
1X1)

−1X ′
1µ1)(µ2 −X2(X

′
1X1)

−1X ′
1µ1)

′

= σ2[I +X2(X
′
1X1)

−1X ′
2]

Since we know (y2−X2b1)
′[I+X2(X

′
1X1)

−1X ′
2]
−1(y2−X2b1)/σ

2 ∼ χ2(n2),
y2−X2b1

[I+X2(X′
1X1)−1X′

2]
1/2s1

∼
t(n−k), and especially when n2 = 1. From this, interval estimation for y2 can be conducted.
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9 Example 1

Following example is for the estimation of consumption function. It is noted that one

of explanatory variable is a time trend.

Understanding the Regression Results:

• Constant term usually do not have any meaning. Test the size of R2 for the regression

with constant only.

• What is the meaning of coefficient?

• Try to understand the meaning of R2, R̄2, F2,12, F1,13.

• Consider whether it is desirable to include the variable ’Time’. (Hint:t-test and F -

test.)

Regression Results Under No Constraint

Ŷi = 53.16 + 0.72Xi2 + 2.73Xi3

(13.02) (0.05) (0.85)

t = (4.08) (14.91) (3.22)

p-value = (0.001) (0.000) (0.003)

df = 12 R2 = 0.9988 F2,12 = 5128.88

R̄2 = 0.9986 RSSur = 77.1692

(53)

Regression Results Under Constraints

Ŷi = 12.76 + 0.88Xi2

(4.68) (0.011)

t = (2.73) (77.12)

p-value = (0.017) (0.000)

df = 13 R2 = 0.9978 F1,13 = 5947.72

R̄2 = 0.9976 RSSr = 144.0347

(54)

F(m,n− k) =
(e∗

′
e∗ − e′e)/m

e′e/(n− k)
=>

(RSSr −RSSur)/m

RSSur/(n− k)

=
(R2 −R∗2)/m

(1−R2)/(n− k)

=>
(144.0347− 77.1692)/1

77.1692/12
= 10.3978

=>
(0.9988− 0.9978)/1

(1− 0.9988)/12
= 10.3978

** F1,12,0.05 = 4.75, t2 = (3.2246)2 = 10.3978. p-value = 0.0073
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Table 1: Personal Consumption Expenditure(PCE) and Personal Disposable Income (PDI),

US 1956-70. (Unit: bill. 1958 dollars)

PCE (Y ) PDI (X2) Time (X3)

281.4 309.3 1956 =1

288.1 316.1 1957=2

290.0 318.8 1958=3

307.3 333.0 1959=4

316.1 340.3 1960=5

322.5 350.5 1961=6

338.4 367.2 1962=7

353.3 381.2 1963=8

373.7 408.1 1964=9

397.7 434.8 1965=10

418.1 458.9 1966=11

430.1 477.5 1967=12

452.7 499.0 1968=13

469.1 513.5 1969=14

476.9 533.2 1970=15

10 Exercise 2

Using Cobb-Douglas production function, we can test capital and labor productivity.

We can also test the constraints on the coefficients. (For example, if the sum of capital

and labor productivity equals 1 in Cobb-Douglas production function, it means constant

returns to scale.)

If Y = AKαLβ, then, the production function we are going to estimate after taking ln

on both sides takes the form of

lnYi = β1 + β2 lnXi2 + β3 lnXi3 + µi.

where β1 = lnA, β2 = α, β3 = β, lnXi2 = lnK, lnXi3 = lnLÀÌ´Ù.
To test the null hypothesis H0 : β2+β3 = 1, regression function under constraints would

be

lnYi = β1 + (1− β3) lnXi2 + β3 lnXi3 + µi

lnYi − lnXi2 = β1 + β3(lnXi3 − lnXi2) + µi

ln(Yi/ lnXi2) = β1 + β3 ln(Xi3/ lnXi2) + µi

Regression Results Under No Constraint

ˆlnYi = −3.34 + 1.50 lnX2i + 0.49 lnX3i

(2.45) (0.54) (0.10)

t = (−1.36) (2.78) (4.80)

df = 12 R2 = 0.8890 F2,12 = 48.068

R̄2 = 0.8705 RSSur = 0.067

(55)
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Table 2: Real GDP, Labor Input, Capital Input of Agricultural Sector, Taiwan, 1958-1972.

Year Real GDP Labor Input Capital Input

1958 16607.7 275.5 17803.7

1959 17511.3 274.4 18096.8

1960 20171.2 269.7 18271.8

1961 20932.9 267.0 19167.3

1962 20406.0 267.8 19647.6

1963 20831.6 275.0 20803.5

1964 24806.3 283.0 22076.6

1965 26465.8 300.7 23445.2

1966 27403.0 307.5 24939.0

1967 28628.7 303.7 26713.7

1968 29904.5 304.7 29957.8

1969 27508.2 298.6 31585.9

1970 29035.5 295.5 33475.5

1971 29281.5 299.0 34821.8

1972 31535.8 288.1 41794.3

Regression Results Under Constraints

ˆlnYi/Xi2 = 1.71 + 0.61 ln(X3i/X2i)

(0.42) (0.09)

t = (4.17) (6.57)

df = 13 R2 = 0.7685 F1,13 = 43.161

R̄2 = 0.7507 RSSr = 0.091

(56)

F(m,n− k) =
(e∗

′
e∗ − e′e)/m

e′e/(n− k)
=>

(RSSr −RSSur)/1

RSSur/12
= F(1, 12)

F = (0.8890−0.7685)/1
(1−0.8890)/12 = 4.3587. F1,12,0.05 = 4.75.

(Homework) Obtain the test statistics of F using RSSr, RSSur.
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11 Exercise 3

Estimation of Chicken Demand Function for US(1960-1982).

lnYi = β1 + β2 lnX2i + β3 lnX3i + β4 lnX4i + β5 lnX5i + µi.

From the demand theory of economics, we know the sign of β2 > 0, β3 < 0, β4, β5 are

different depending on whether these are for independent good, substitutes, or complements.

The null hypothesis H0 : β4 = β5 = 0 tells that chicken demand is not affected by the

price of pork and beef. That is, chicken is independent good of pork and beef. Then under

this constraint, the regression function will be

lnYi = β1 + β2 lnX2i + β3 lnX3i + µi.

Regression Results Under Constraints

ˆlnYi = 2.03 + 0.45 lnX2i −0.38 lnX3i

(0.12) (0.02) (0.06)

df = 20 R2 = 0.9801 F2,20 =

R̄2 = 0.7507 RSSr =

(57)

Regression Results Under No Constraint

ˆlnYi = 2.19 + 0.34 lnX2i −0.50 lnX3i + 0.15 lnX4i + 0.09 lnX5i

(0.16) (0.08) (0.11) (0.10) (0.10)

df = 18 R2 = 0.9823 F4,18 =

R̄2 = 0.8705 RSSur =

(58)

F(m,n− k) =
(e∗

′
e∗ − e′e)/m

e′e/(n− k)
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(Homework) Obtain the test statistics F using RSSr, RSSur. Check to see if F = 1.124.

F2,18,0.05 = 3.55 for your reference.

Table 3: Chicken Demand of US 1960-1982

Year Y X2 X3 X4 X5 X6

1960 27.8 397.5 42.2 50.7 78.3 65.8

1961 29.9 413.3 38.1 52.0 79.2 66.9

1962 29.8 439.2 40.3 54.0 79.2 67.8

1963 30.8 459.7 39.5 55.3 79.2 69.6

1964 31.2 492.9 37.3 54.7 77.4 68.7

1965 33.3 528.6 38.1 63.7 80.2 73.6

1966 35.6 560.3 39.3 69.8 80.4 76.3

1967 36.4 624.6 37.8 65.9 83.9 77.2

1968 36.7 666.4 38.4 64.5 85.5 78.1

1969 38.4 717.8 40.1 70.0 93.7 84.7

1970 40.4 768.2 38.6 73.2 106.1 93.3

1971 40.3 843.3 39.8 67.8 104.8 89.7

1972 41.8 911.6 39.7 79.1 114.0 100.7

1973 40.4 931.1 52.1 95.4 124.1 113.5

1974 40.7 1021.5 48.9 94.2 127.6 115.3

1975 40.1 1165.9 58.3 123.5 142.9 136.7

1976 42.7 1349.6 57.9 129.9 143.6 139.2

1977 44.1 1449.4 56.5 117.6 139.2 132.0

1978 46.7 1575.5 63.7 130.9 165.5 132.1

1979 50.6 1759.1 61.6 129.8 203.3 154.4

1980 50.1 1994.2 58.9 128.0 219.6 174.9

1981 51.7 2258.1 66.4 141.0 221.6 180.8

1982 52.9 2478.7 70.4 168.2 232.6 189.4

Y : Chicken Consumption Per Capita (Unit:lb)

X2: Real Disposable Income per Capita (Unit: $)
X3: Real Retail Price of Chicken (Unit:lb, cent)

X4: Real Retail Price of Pork (Unit:lb, cent)

X5: Real Retail Price of Beef (Unit:lb, cent)

X6: Substitute Price Index (Weighted Average of real retail price of Pork and beef)
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Table 4: Private Saving and Income, Britain,1946-1963 (Unit: Mil. Pound)

Year Savings Income

1946 0.36 8.8

1947 0.21 9.4

1948 0.08 10.0

1959 0.20 10.6

1950 0.10 11.0

1951 0.12 11.9

1952 0.41 12.7

1953 0.50 13.5

1954 0.43 14.3

1955 0.59 15.5

1956 0.90 16.7

1957 0.95 17.7

1958 0.82 18.6

1969 1.04 19.7

1960 1.53 21.1

1961 1.94 22.8

1962 1.75 23.9

1963 1.99 25.2
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